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Level set methods for moving interface problems require efficient techniques for
transforming an interface to a globally defined function whose zero set is the in-
terface, such as the signed distance to the interface. This paper presents efficient
algorithms for this “redistancing” problem. The algorithms use quadtrees and trian-
gulation to compute global approximate signed distance functions. A quadtree mesh
is built to resolve the interface and the vertex distances are evaluated exactly with
a robust search strategy to provide both continuous and discontinuous interpolants.
Given a polygonal interface withN elements, our algorithms run inO(N) space and
O(N log N) time. Two-dimensional numerical results show they are highly efficient
in practice. c© 1999 Academic Press
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1. INTRODUCTION

Many problems in computational science involve complex interfaces evolving through
topological changes, faceting, and singularities. Such problems are difficult to solve numer-
ically. Level set methods, which view the interface as the zero set of a function, form an
effective general approach because they handle topological changes automatically.

An essential procedure in level set methods isredistancing: Given an interface0 built of
N elements, compute a signed distance function

D(x) = ±min
y∈0
‖x − y‖ (1)

on some collection of pointsx. A more general form of redistancing computes a simpler
functionϕ(x)with zero set0. Many evaluations ofϕ are required, so efficiency is important.

We present efficient algorithms for solving this general redistancing problem. Our algo-
rithms resolve0 with a quadtree mesh and evaluateD on the quadtree vertices inO(N)
space andO(N log N) time. Interpolation produces each valueϕ(x) in O(log N) time and
runs extremely fast in practice.

Section 2 of this paper reviews level set methods for moving interfaces and specifies
the redistancing problem. Section 3 describes standard properties of quadtrees, Voronoi
diagrams, and Delaunay triangulations. Section 4 presents our fast redistancing algorithms
and Section 5 demonstrates their efficiency and utility with numerical experiments. Section 6
draws conclusions and discusses extensions and applications.

2. MOVING INTERFACES, LEVEL SETS, AND REDISTANCING

This section reviews moving interface problems, level set methods, and redistancing.
Subsection 2.1 describes four moving interface problems, passive transport, unit normal
velocity, anisotropic curvature-dependent flow, and crystal growth. Subsection 2.2 converts
moving interface problems into level set equations on a fixed domain and reviews their
solution by the level set method. Subsection 2.3 discusses initialization and redistancing in
the level set method.

2.1. Moving Interface Problems

A general moving interface is the boundary0(t)= ∂Ä(t) of a setÄ(t) ⊂ Rd depending
on timet . If Ä is sufficiently smooth, then0(t) has an outward unit normalN and a normal
velocityV at each point. Amoving interface problemis a closed system of equations which
specifiesV as a functional of0, possibly in a highly indirect and nonlocal way. Figure 1
displays representative solutions of several of the following moving interface problems.

Passive transport. An interface is transported in an ambient flow which is independent
of 0. Thus a velocity fieldF(x, t) is given onRd and0(t) moves with normal velocity
V = N · F .

Unit normal velocity. The simplest geometric flow moves0(t) along its normal with ve-
locity V = 1. Nonconvex initial interfaces moving under this flow produce complex merging
and cornering patterns which challenge standard numerical methods.
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FIG. 1. Representative solutions of moving interface problems: (a) initially circular bubbles after transport in
a shearing flow, (b) merging of complex interfaces with unit normal velocity, and (c) crystalline facets developing
under a threefold anisotropic curvature-dependent velocity.

Curvature-dependent velocity.An interface moves with anisotropic curvature-dependent
normal velocity

V(x, t) = R+ ε cos(K θ + θ0)+ (R′ + ε′ cos(K ′θ + θ ′0))C, (2)

whereC is curvature and cosθ = N · e1 is the cosine of the angle between the normal vector
and the positivex-axis. These velocity fields produce faceted interfaces merging in complex
anisotropic patterns and are often used as simplified models in materials science [16].

Crystal growth. Many industrial problems involve moving interfaces separating differ-
ent phases of a material. The interface between a solidifying crystalline material and its
liquid melt, for example, can be modeled by a Stefan-type problem

ut = 1u off 0(t) (3)

u = −εC on0(t). (4)
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Here the temperature fieldu is unknown and the interface0 moves with normal velocity
V equal to the jump in the normal derivative ofu. Many numerical methods have been
developed for this problem [2, 8, 10].

2.2. Level Set Methods

Moving interface problems can be reformulated as “level set equations” on a fixed domain,
using thezero set

0(t) = {x ∈ Rd : ϕ(x, t) = 0} (5)

of an arbitrary functionϕ : Rd×R→ R, such as the signed Euclidean distance

D2(x, t) = ± min
y∈0(t)
‖x − y‖2 = ±min

y∈0

√√√√ d∑
i=1

(xi − yi )2 (6)

or the signed max-norm distance

D∞(x, t) = ± min
y∈0(t)
‖x − y‖∞ = ±min

y∈0
max
1≤i≤d
|xi − yi |. (7)

Figure 2 shows a pentagonal interface inR2 and the corresponding signed Euclidean distance
function D2.

If we choose the sign ofϕ positive inÄ(t), then the outward unit normalN and normal
velocity V of 0(t) are given by standard geometric formulas [17]:

N = ∇ϕ/‖∇ϕ‖2, (8)

V = ϕt/‖∇ϕ‖2. (9)

FIG. 2. The correspondence between an interface and a level set function: (a) A pentagonal interface0, and
(b) the signed Euclidean distance functionD2 to 0.
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Given any extension of the normal velocity vectorV N to a functionF(x, t) onRd, Eq. (9)
implies the “level set equation” which moves0 by evolvingϕ:

ϕt − F · ∇ϕ = ϕt − (F · N)‖∇ϕ‖2 = 0. (10)

Equation (10) moves every level set ofϕ with the extended velocityF , and in particular
moves the zero set0(t) with the correct velocityV N. Merging, breaking, and other topo-
logical changes happen automatically because the topology is embedded implicitly inϕ

rather than explicitly in0(t), as illustrated by Fig. 3. The moving interface problems of
Subsection 2.1 can be reformulated into level set equations as follows.

Passive transport. For passive transport,F is already defined onRd and is a natural
extension ofV N. The level set equation becomes a linear hyperbolic partial differential
equation (PDE)

ϕt − F(x, t) · ∇ϕ = 0. (11)

FIG. 3. (a) Two pentagons growing with unit normal velocity merge. The discontinuous piecewise bilinear
interpolant to the signed max-norm distance functionD∞ is plotted over a quadtree mesh at (b) initial and (c) final
times.
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Unit normal velocity. With N extended by Eq. (8), motion with unit normal velocity
becomes a nonlinear hyperbolic PDE

ϕt − ‖∇ϕ‖2 = 0. (12)

Curvature-dependent velocity.The velocity defined by Eq. (2) yields

ϕt − (R+ε cos(K θ+θ0))‖∇ϕ‖2 = (R′ +ε′ cos(K ′θ+θ ′0))∇ · (∇ϕ/‖∇ϕ‖2)‖∇ϕ‖2. (13)

Here cosθ =ϕx/‖∇ϕ‖2 and we have used the curvature formulaC=−∇ · N from [17].
Equation (13) is a mixed hyperbolic-parabolic PDE which is singular where∇ϕ vanishes.

Crystal growth. The exact velocity of the moving interface in crystal growth is a com-
plicated nonlocal functional of the interface, which can be extended off the interface in
many ways. See [2, 10] for representative extensions and numerical results.

Level set methods move0(t) via the level set equation. An initial level set function
ϕ(x, 0) and an extended velocity fieldF are built, the level set equation (10) is solved
numerically, and the solutionϕ(x, t) is contoured when0(t) is required. The method was
introduced in [6], and an extensive recent survey is [9]. It has undergone much development
and been applied to many moving interface problems.

2.3. Redistancing

Moving interface computations begin with the initial interface0, while the level set
equation (10) requires globally defined and continuous initial valuesϕ(x) satisfying

0 = {x : ϕ(x) = 0}. (14)

Theredistancing problemconsists of the stable specification and efficient evaluation ofϕ.
Efficiency is important because directly evaluating the signed distance functionD2 from

Eq. (6) is prohibitively expensive. Consider a uniform mesh inRd with Nd points. A
typical interface0 containsO(Nd−1) elements, so evaluatingD2 directly on the mesh costs
O(N2d−1) work. This greatly exceeds theO(Nd) cost of moving0 one step on the mesh
if d ≥ 2. Thus we need to changeϕ or compute it efficiently—or both.

Efficiency is even more important for methods and problems where the level set function
is redistanced frequently, where we need an algorithm costing less than the computation of
one time step. See [2, 9, 13] and Subsection 5.2 for examples.

Several fast schemes for evaluatingD2 approximately on a uniform mesh have been
developed: The Eikonal equation (12) is solved to steady state in [15], while [1] applies
heapsort techniques. For many applications, however, a uniform mesh wastes computational
effort solving the level set equation accurately far from the interface. The ultimate goal of
level set methods is to move0, and redistancing discards values ofϕ far from0, so efficient
level set methods should use an adaptive mesh to concentrate computational effort near the
interface. Adaptive level set methods are presented in [7, 9, 13].

The algorithms of this paper evaluate exact signed distance values in any norm at the
vertices of a quadtree mesh which resolves0 accurately at optimal cost. Given these vertex
values, many interpolants to the signed distance function can be built. We discuss discon-
tinuous piecewised-linear interpolation on quadtree cells and continuous piecewise-linear
interpolation on various triangulations of the quadtree vertices. All these interpolants are
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close to signed distance functions near0 and give excellent results in the level set method.
Our algorithms buildϕ in O(N log N) work if 0 containsN elements, costO(log N) per
ϕ evaluation, and run extremely fast in practice.

3. QUADTREES AND TRIANGULATION

Our fast redistancing algorithms rely on basic structures of computational geometry such
as quadtrees, Voronoi diagrams, and triangulations. In this section, we review the definitions
and properties of these structures which suit them to redistancing. We define, build, and
triangulate quadtree meshes in Subsection 3.1, discuss the Voronoi approach to redistancing
in Subsection 3.2, and provide background on the Delaunay triangulation in Subsection 3.3.

3.1. Quadtree Meshes

3.1.1. Definition. A quadtree meshcovering the cube [0, 1]d in Rd is composed of
square cells organized into levels, with each cell on levell + 1 contained in some level-l
cell, and stores the following information:

• The root cellC0= [0, 1]d.
• A maximum levelL ≥ 0.
• A cell list of cells, grouped by level.
• A vertex listof cell vertices, without repetitions.
• Other application-dependent data.

Each cellC in the cell list stores:

• Its level l and corner vertex(i1, . . . , i d): the cell covers the box 2−l [i1, i1 + 1]×
· · · × [i d, i d + 1].
• The indices in the vertex list of the 2d cell vertices.
• The index in the cell list of its parent (if there is one).
• The indices in the cell list of its children (if there are any).
• Other application-dependent data.

Figure 4 shows an example withL = 2. Given a generalL-level quadtree, many operations
related to searching and sorting can be done efficiently: finding the quadtree cell where a
point x lies, for example, requiresO(L) examinations of bits in the binary representation
of x.

3.1.2. Building a quadtree.To build a quadtree, start with a root cell at levell = 0.
Test whether it requires splitting into 2d children on levell + 1. Thesplitting criterion
distinguishes between quadtrees and must be specified to suit the application. If a cell needs
splitting, some bookkeeping must be done: create new vertices, adjust familial pointers,
and so forth. Then test the children, split if necessary, and repeat the process recursively.
Terminate the build when no cell requires splitting.

Many useful quadtrees can be built with some variant of the following splitting criterion:

Split any cell whose edge length exceeds its minimum distance to0. (15)

If the distances from all the vertices to0 are computed as the quadtree is built, then this
criterion is easy to implement. It results in quadtrees with smoothly varying cell sizes which
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FIG. 4. Levels 0, 1, and 2 of a quadtree with cellsCi and verticesVi .

are useful in adaptive level set methods [13] and harmonic analysis [12]. These quadtrees
represent0 efficiently: if N childless cells touch0, then the entire quadtree meshes [0, 1]d

with only O(N) childless cells. Figure 5 plots a quadtree mesh built with Criterion (15) in
the max-norm distance|D∞|, and a related criterion is used in Section 4.

FIG. 5. A six-level quadtree mesh built around the pentagonal zero set of Fig. 2.
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FIG. 6. Triangulating a quadtree mesh. The filled dots are quadtree vertices, open circles are Steiner points.

3.1.3. Triangulating quadtree vertices.Given function valuesϕ(x) at the verticesx
of the quadtree mesh, there are many ways to define a global interpolant. Multilinear
interpolation on each quadtree cell is convenient and efficient, but produces a discontinuity
when cells change size.

A continuous interpolant can be built by triangulating the quadtree vertices into a simpli-
cial mesh and linearly interpolating on each simplex (triangle ifd= 2, tetrahedron ifd= 3).
Any set of vertices can be triangulated with the Delaunay triangulation of Subsection 3.3, but
quadtrees built with Criterion (15) provide a more efficient alternative. Adjacent cells differ
in size by no more than a factor of 2, so such quadtrees can be triangulated by adding at most
one Steiner point per cell and triangulating the result. Figure 6 shows a two-dimensional
example: the technique generalizes easily to higher dimensions [3].

Given a triangulation of the tree vertices, level set functions with any desired degree
of smoothness can be built by varying the interpolation technique appropriately. ACk

level set functionϕ can be constructed by Hermite interpolation to the function values and
estimated derivatives of order≤ k at triangulation vertices. These techniques are useful in
geometric moving interface problems involvingϕ derivatives such as the normal vectorN
and curvatureC.

3.2. Voronoi Diagrams

The Voronoi diagram is a classic tool of computational geometry which solves the equiva-
lent of the redistancing problem when0 is adiscreteset ofN pointsxj ∈ Rd. The Euclidean
Voronoi diagramV2(0) is a collection ofN regions

Vj = {x ∈ Rd : ‖x − xj ‖2 ≤ ‖x − xi ‖2 for all i 6= j }. (16)
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FIG. 7. The Euclidean Voronoi diagram of a small set of points.

The max-norm Voronoi diagramV∞(0) is defined by Eq. (16) with‖ ‖2 replaced by‖ ‖∞.
Vj consists of all points closer toxj than to any other point of0. Figure 7 plots the Euclidean
Voronoi diagram of a small point set.

GivenV2(0), the minimum distance from anyx to0 is simply‖x− xj ‖2 wherex ∈ Vj ,
so redistancing immediately reduces to point location in the partitionV2(0) of Rd. Many
O(N log N) algorithms for building Voronoi diagrams and for point location have been
designed [3, 4], so redistancing from a discrete point set is straightforward.

When0 is a collection ofN computational elementsEj such as segments in the plane
or triangles inR3, the Voronoi regions can be defined by

Vj =
{

x ∈ Rd : min
y∈Ej

‖x − y‖2 ≤ min
y∈Ei

‖x − y‖2 for all i 6= j
}
.

Thus the Voronoi diagram of0 reduces the redistancing problem to point location in a
subdivision ofRd. SinceV(0) can be built efficiently [19], it provides—in theory—an
asymptoticallyoptimal solution to the redistancing problem. However, even when0 is a
set of segments in the plane, there is no practical implementation of any fast algorithm for
computing the Voronoi diagram. The Voronoi diagram is expensive to construct because it
must identify a single nearest element to every point of space.

A compromise between construction speed and redistancing speed is the compact Voronoi
diagram of [5]. This geometric object produces several candidates for the nearest element
to any pointx, but has a much simpler structure. The boundaries of a compact Voronoi
region, for example, are simple polygons, rather than the piecewise algebraic curves of
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FIG. 8. The Delaunay triangulation of the tree vertices from Fig. 5.

the exact Voronoi diagram for0. The compact Voronoi diagram may in future become the
redistancing method of choice, but no practical implementation is presently available.

3.3. Delaunay Triangulation

The Delaunay triangulation is a geometric object related to the Voronoi diagram, which
we use to interpolateϕ in Subsection 4.3 and to fix the sign ofϕ in Subsection 4.4. Given
any set ofM data pointsxj in Rd, there are many ways to connect the points into a simplicial
mesh (a triangulation in the plane, a tetrahedralization in space), some better than others.
One of the best is the Delaunay triangulation, which is the dual of the Voronoi diagram
described in Subsection 3.2. (Figure 8 shows a Delaunay triangulation of the tree vertices
from Fig. 5.) It gives optimal error bounds for interpolation [18] and can be built efficiently
in time O(M log M) by many algorithms. We use the standard C codeTriangle [11]. In
three dimensions, the worst-case complexity of triangulatingN vertices increases toO(N2)

but Delaunay triangulation remains efficient.

4. EFFICIENT REDISTANCING ALGORITHMS

Efficient tree-based algorithms for redistancing the level set functionϕ are presented. We
define a new data structure, the distance tree, in Subsection 4.1, and build it in Subsection 4.2.
In Subsection 4.3, we interpolate on the distance tree to compute variousunsigneddistance
functions|ϕ|. Subsection 4.4 uses a triangulation of the distance tree vertices to specify
a sign for the distance function at each point. Subsection 4.5 achieves the same goal by
checking the normal vectors at nearest elements of0.
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4.1. Definition of the Distance Tree

The distance tree is a special quadtree designed to assist in fast redistancing of an interface
0. In addition to the root cell, cell list, and vertex list defined in Subsection 3.1, it stores
vertex distances and cell pointers to nearby elements of0.

Suppose0 is composed ofN computational elementsEj , which are segments in the plane,
triangles inR3, or higher-order piecewise polynomial patches. We assume two properties
of this decomposition of0: first, we can compute the exact minimum distance from any
point x to any elementEj in any norm desired; and second, the element sizes all vanish at
the same rate asN →∞. Then the distance tree contains:

• avertex distance listof the minimum max-norm distances|D∞(x)| to0 from each
vertexx of the tree.

Each distance tree cellC contains:

• anelement listof all elementsEj intersecting theconcentric tripleof C. If

C = {x ∈ Rd : ‖x − c‖∞ ≤ r
}

has centerc and edge length 2r then its concentric tripleT is given by

T = {x ∈ Rd : ‖x − c‖∞ ≤ 3r
}
.

For convenience, we will refer to a cell with empty element list as empty. Figure 5 shows
the cells in the distance tree for a simple curve.

4.2. Building the Distance Tree

We build a distance tree around0 by

• choosing the root cell,
• specifying a splitting criterion,
• maintaining the element lists, and
• computing the vertex distances from each cell.

The root cell is the smallest square cell enclosing0. Its level is 0, and its element list
contains every element of0. The distances from its 2d vertices to0 are computed directly.

The splitting criterion is Criterion (15) from Subsection 3.1.2, specialized to the max-
norm distance:

Split any cell whose concentric triple intersects0. (17)

This criterion leads to an efficient search strategy for computing the vertex distances as we
build the tree. It can be varied slightly by counting the number of elements intersecting the
cell, to avoid over-resolving faceted interfaces0 with large facets. This variant efficiently
resolves adaptively refined interfaces built with elements of varying sizes.

Splitting a cell according to this criterion requires element list and vertex distance list
maintenance. Element lists are easy to handle: check every element in the parent’s element
list for intersection with the child’s triple and add it to child lists when intersection occurs.
Note that triples of child cells do not tile their parent’s concentric triple, so a nonempty
parent may have empty children.
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Vertex distance list. The most important information in the distance tree —the minimum
max-norm distance|D∞(x)| from a new vertexx of a child cellC to 0—is computed
efficiently by the following three-step search strategy:

1. Search the element list ofC, finding the minimum distancem1 from x to the
elements of0 in the element list ofC.

2. If C is empty orm1 violates the inclusion condition{
y ∈ Rd : ‖x − y‖∞ ≤ m1

} ⊂ T, (18)

whereT is the triple ofC, compute the minimum distancem2 from x to elements of0 in
the element list ofC’s parentC′. The parent must be nonempty since it is being split.

3. If m2 violates the inclusion condition{
y ∈ Rd : ‖x − y‖∞ ≤ m2

} ⊂ T ′, (19)

whereT ′ is the triple ofC′, expand the search to include elements of0 in the element list
of the grandparentC′′. The resultm3 is the minimum distance to0.

With this search strategy, the total cost of building anL-level distance tree around anN-
element interface isO(N L) asN → ∞, because the union of all triples of cells on level
l ≤ L intersectsO(N) elements.

The correctness of this procedure relies on using the max-norm distance function|D∞|,
because our square tree cells are spheres in the max-norm. Figure 9 illustrates whygreat-
grandparents never need to be searched. The nearest element of0 which intersects the triple

FIG. 9. The nearest element of0 which intersects the tripleT ′ of the parentC′ of a distance tree cellC may
not be the nearest element of0 overall. But if the max-norm is used, the nearest element intersectingT ′ beats
every element outside the tripleT ′′ of the grandparentC′′.
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T ′ of the parentC′ of a tree cellC may not be the nearest element of0 overall. But if the
max-norm is used, the nearest element intersectingT ′ beats every element outside the triple
T ′′ of the grandparentC′′.

In the Euclidean norm, the distance between opposite corners of a hypercube is
√

d > 1 so
we may need to search great-grandparents. However, a slight variant of this search strategy
computes all vertex values ofD2 in O(N L) time.

4.3. Interpolation

The distance tree gives us exact distance values atO(N) vertices clustered near the
interface. A globally defined level set functionϕ can be built from these distance values in
many ways, of which we discussd-linear cell interpolation and linear simplex interpolation.

4.3.1. Cell interpolation. Let |ϕ| be thed-linear interpolant to the vertex values on each
empty childless distance tree cell. Ind= 2 dimensions, for example, a cellC with edge
lengthh has four vertices(x0+ ih, y0+ jh) with distances|ϕi j | for 0≤ i, j ≤ 1. Then|ϕ|
is defined at a point(x = x0+ αh, y = y0+ βh) in C by

|ϕ|(x, y) = (1− α)(1− β)|ϕ00| + α(1− β)|ϕ10| + (1− α)β|ϕ01| + αβ|ϕ11|. (20)

On nonempty childless cells, whose concentric triples intersect0, |ϕ| is defined to be
exactly equal to the distance|D∞| to0. (See Fig. 10.) The following search strategy evaluates
|ϕ| efficiently in nonempty childless cells near0: A nonempty childless cellC stores a list
of all elements of0 intersecting its tripleT . This allows us to search the element list of
C for the closest element tox, yielding a minimum distancem1. As in the construction of

FIG. 10. The discontinuous piecewise bilinear interpolant to the signed max-norm distance functionD∞ on
a six-level quadtree mesh built around the pentagonal zero set of Fig. 2.



678 JOHN STRAIN

the distance tree,m1 may not be the global minimum distance, but searching the element
list of the parentC′ is guaranteed to find the minimum. There are a bounded number of0

elements near any nonempty childless cellC asN →∞, so the cost of each evaluation is
dominated by theO(log N) cost of finding the cellC containingx.

Thus|ϕ| is evaluated by interpolating exact vertex distances on empty childless cells and
by searching one or two short lists on nonempty childless cells near the interface. It has the
following properties.

• |ϕ| has zero set0,
• |ϕ| = |D∞| at vertices of the tree and in cells sufficiently near0,
• |ϕ| can be evaluated inO(log N) work at anyx, and
• |ϕ| is continuous almost everywhere, with jumps where cells change size decreasing

in magnitude as cells approach0.

4.3.2. Simplex interpolation.We can construct a continuous level set functionϕ by
triangulating the vertices and piecewise-linearly interpolating to the vertex values. See
Fig. 11 for an example. This level set function can be evaluated at any pointx by finding
the simplex containingx and interpolating from its vertices. Finding the simplex costs
O(log N), so each|ϕ|evaluation costsO(log N). Building the Delaunay triangulation of the
O(N) tree vertices costsO(N log N), while triangulating the quadtree vertices directly as in
Subsection 3.1.3 costsO(N)—both asymptotically comparable to building the distance tree.

The simplex interpolant is continuous, but not exactly equal toD near0, and thus has
zero set slightly different from0. If necessary, we can form the constrained Delaunay trian-
gulation including the edges and vertices of the polygonal interface0, to get a continuous
interpolant with zero set exactly equal to0.

FIG. 11. The continuous piecewise linear interpolant to the signed max-norm distance functionD∞ on the
Delaunay triangulation of Fig. 8.
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4.4. Signingϕ by Triangulation

Both cell and simplex interpolation produce an approximateunsigneddistance function
|ϕ(x)| associated with an interface0, while the level set method requires thesigneddistance
functionϕ(x) = ±|ϕ(x)|. When redistancingϕ from its own zero set on a fixed grid, as
in Subsection 2.3, we can preserve the sign of each value ofϕ(x). We need to fix the
sign, however, when initializingϕ from an interface0. The following algorithm locates the
interface in a triangulation of the quadtree vertices, then propagates the sign inward from
the boundary.

Given a triangulation of the distance tree vertices, mark every edge of the triangulation
which is crossed by an element of0. This requires time proportional to the tree depth times
the size of0, O(N L)=O(N log N), because marking each edge costsO(L). Set the sign
of ϕ to −1 at one corner vertex of the root cell and propagate the sign along every edge.
Before propagating along a marked edge, change the sign from−1 to+1 or from+1 to
−1. If 0 crosses the edgen times, change the signn times. A robust algorithm must take
special care when0 touches an edge without crossing. After propagation finishes, we have
a consistent choice of sign forϕ at each distance tree vertex. See Fig. 12 for an example.

4.5. Signingϕ by Normal Vectors

The sign ofϕ can be fixed more efficiently if we have an outward unit normal vector
on each element of0. Then while we are finding a closest point of0 to any quadtree

FIG. 12. Fixing the sign ofϕ with a triangulation of the distance tree vertices. The lower left corner is assigned
sign−1; then the sign propagates unchanged along edges not crossing0, shown as thin lines, and flips on edges
crossing0, shown as thick lines. Thus the open circles receive negativeϕ values while the solid dots receive
positiveϕ values.
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FIG. 13. Pitfalls in fixing the sign ofϕ. The pointx lies outside0 according to elementE, but inside0
according to elementF , and both are nearest elements of0 to x.

vertexx we can determine the sign ofϕ(x) simultaneously by checking which side of the
nearest elementx lies on. This procedure costs much less than the triangulated algorithm
of Subsection 4.4, but requires some care in implementation. Figure 13 shows one possible
pitfall: At acute corners of0, all elements of0 touching the corner must be checked to
determine the sign ofϕ(x) correctly.

5. NUMERICAL RESULTS

We verify the speed of our algorithms with large-scale runs on simple and complex
interfaces in Subsection 5.1 and show a simple application to level set computations in
Subsection 5.2. Two-dimensional versions of our algorithms were implemented in ANSI
C, compiled with the SunSoft C compiler using the -fast flag, and run on one CPU of a
Sun 200 MHz Ultra-2 workstation under Solaris 2.6. The codes have not been specially
optimized and could probably be speeded up by one to two orders of magnitude by investing
additional programming effort.

5.1. Efficiency

5.1.1. Direct evaluation. We took the signed Euclidean distance functionD2 of the
pentagonal interface from Fig. 2, contoured it on a squareM ×M grid to represent0 with
N=O(M) segments, then evaluatedD∞(x) directly at every vertex of theM ×M grid.
Table I(a) records the CPU timesT required and the computed areaA enclosed by the
interface, which indicates the resolution of0 provided by theM ×M grid. We repeated the
experiment with the complex interface of Fig. 14 and report the corresponding times and
areas in Table I(b).
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TABLE I

Uniform Grid Size M , Number N of Segments in the Interface, Computed AreaA, and CPU

SecondsT for Direct Redistancing of the Level Set Functionφ

(a) (b)

M N A T M N A T

32 120 3.61486 0.09 32 302 1.50602 0.19
64 248 3.62906 0.73 64 856 1.71439 2.32

128 496 3.63180 5.84 128 1900 1.73998 20.5
256 1000 3.63253 49.7 256 3920 1.73377 169
512 2004 3.63266 400 512 7936 1.72980 1370

Note.Results for (a) the pentagonal interface of Fig. 2, and (b) the complex interface of Fig. 14.

FIG. 14. The complex interface used in Tables I and II, plotted over a distance tree mesh with (a) 6, (b) 7,
and (c) 8 levels.
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These experimental results agree with theoretical expectations: the direct method re-
quiresO(M2N)=O(M3) CPU time. DividingT by M2N gives an almost constant result,
close to 10−6 seconds per segment per evaluation. ThereforeT ≈ 10−6M2N seconds, so
each direct evaluation costsO(N) time. For large-scale computation, these timings are
prohibitive. Three-digit accuracy in the area of a complex interface requires almost three
minutes per redistancing: adequate accuracy in geometric quantities such as normal vectors
and curvature would require greater computational effort and make fast algorithms even
more attractive.

5.1.2. Fast algorithms. We redistanced the interfaces shown in Figs. 2 and 14 with
our fast algorithms to verify their efficiency. Here we built theL-level distance tree and
evaluated all vertex distances for the same interface, contoured by bilinear interpolation on
tree cells intoN segments. This gives resolution on0 equivalent to the direct method on
a uniform M ×M mesh withM = 2L , at far less cost. Table II reports the CPU timesT
for our fast algorithms, together with the numberC of adaptive tree cells, the CPU timeD
for Delaunay triangulation of theO(N) tree vertices byTriangle[11], and the CPU timeS
required to move the interface one step with the adaptive tree methods of [13].

5.1.3. Comparisons.We draw the following conclusions from Tables I and II:

1. The total number of quadtree cells required to resolve an interface0 with the accu-
racy of a uniformM ×M mesh is asymptoticallyO(M)—an optimal result with bilinear
contouring.

TABLE II

Number of Tree Mesh LevelsL and CellsC, Number N of Segments in the

Interface Γ, Computed Area A, and CPU SecondsT for Fast Redistancing of

the Level Set Functionϕ

L M = 2L N C A T D S

(a)
5 32 124 729 3.6111 0.03 0.14 0.16
6 64 252 1601 3.62792 0.09 0.24 0.28
7 128 502 3365 3.63145 0.20 0.44 0.50
8 256 1006 6913 3.63238 0.46 0.83 0.96
9 512 2010 14017 3.63264 1.07 1.76 2.01

10 1024 4020 28253 3.63269 2.36 3.56 4.15
11 2048 8040 56673 3.63271 5.25 7.23 8.44
12 4096 16080 113541 3.63271 11.6 14.8 17.4

(b)
5 32 322 989 1.41287 0.05 0.17 0.19
6 64 878 2897 1.68656 0.20 0.37 0.42
7 128 1918 7641 1.72989 0.56 0.89 1.03
8 256 3906 19701 1.73062 1.43 2.28 2.62
9 512 7918 46677 1.72947 3.44 5.79 6.66

10 1024 15912 101973 1.72873 8.03 13.2 15.2
11 2048 31849 213561 1.72849 18.5 28.3 33.2
12 4096 63705 437421 1.72844 41.5 60.7 69.8

Note.CPU secondsD for Delaunay triangulation of the tree vertices andS for moving the
interface one step. (a) The pentagonal interface of Fig. 2, and (b) the complex interface of
Fig. 14.
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2. The fast algorithms produce a globally defined level set functionϕ for an N-
element interface inO(N log N)CPU time, much faster than theO(M3) required for direct
evaluation on a uniform mesh and theO(N2) required for direct evaluation at the tree
vertices.

3. With 8000 segments resolving the area of a complex interface to four-digit accuracy,
the equivalent of a 512× 512 uniform mesh, our fast algorithms are 400 times faster than
direct evaluation on a uniform mesh and 20 times faster than direct evaluation at the tree
vertices. At our highest resolution, equivalent to a 4096× 4096 uniform mesh, the fast
algorithms are 160 times faster than direct evaluation at the tree vertices.

4. Our fast redistancing algorithms are highly practical; they cost less than Delaunay
triangulation of the tree vertices and less than moving the interface one step, permitting
frequent redistancing at negligible cost.

5.2. Application to Level Sets

The following example from [1] demonstrates the usefulness of frequent redistancing. A
circle is passively transported with unit radial velocity in the velocity field (see Fig. 15)

F(x, y, t) = ((r − (1+ t)) cos(5θ + θ0)+ 1)(x, y)/r. (21)

FIG. 15. The velocity of Eq. (21), withX andY components shown in (a) and (b). The interfaces at equal
times are shown in (c).
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FIG. 16. A circular interface expanding with the velocity of Eq. (21), computed by solving the level set
equation with no redistancing: (a) and (b) contours of the level set function att = 1 and 2, (c) the quadtree mesh
from the method of [13] att = 2.

While the circle expands at unit speed, other level sets are wildly distorted by the fivefold
anisotropic fieldF (see Fig. 16), producing large solution gradients which reduce the
accuracy of any numerical method. These computations used the tree methods of [13], and
the large gradients distort the mesh becauseϕ is used as a mesh refinement indicator.

When the solutionϕ is redistanced every ten steps, the large gradients disappear and mesh
distortion is eliminated (see Fig. 17). Solution regularity is controlled by the regularity of
the interface rather than the far-field values ofF when frequent redistancing is applied.

6. CONCLUSION

We have reviewed the role of redistancing in level set methods for moving interfaces
and presented fast redistancing algorithms based on trees, triangulation, interpolation, and
a robust search strategy. Our algorithms are fast, straightforward, and extremely useful
in adaptive level set methods for moving interface problems. We are currently applying
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FIG. 17. A circular interface expanding with the velocity of Eq. (21), with redistancing applied every ten
steps: (a) and (b) contours of the level set function att = 1 and 2, (c) the quadtree mesh from the method of [13]
at t = 2.

these algorithms to compute general velocity extensions, permitting the construction of
completely modular level set methods [14] for solving general moving interface prob-
lems.
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