Journal of Computational Physié§2,664—686 (1999)

®
Article ID jeph.1999.6259, available online at http://www.idealibrary.conl DE &l.

Fast Tree-Based Redistancing for
Level Set Computations

John Straih

Department of Mathematics, University of California, 970 Evans Hall,
Number 3840, Berkeley, California 94720-3840
E-mail: strain@math.berkeley.edu

Received August 19, 1998; revised January 19, 1999

Level set methods for moving interface problems require efficient techniques for
transforming an interface to a globally defined function whose zero set is the in-
terface, such as the signed distance to the interface. This paper presents efficient
algorithms for this “redistancing” problem. The algorithms use quadtrees and trian-
gulation to compute global approximate signed distance functions. A quadtree mesh
is built to resolve the interface and the vertex distances are evaluated exactly with
a robust search strategy to provide both continuous and discontinuous interpolants.
Given a polygonal interface witN elements, our algorithms run @(N) space and
O(N log N) time. Two-dimensional numerical results show they are highly efficient
in practice. (© 1999 Academic Press

Key Wordsmoving interfaces; level sets; distance function; data structures; trian-
gulation.

CONTENTS

1. Introduction.

2. Moving interfaces, level sets, and redistancing.1. Moving interface problems. 2.2. Level set
methods. 2.3. Redistancing.

3. Quadtrees and triangulation.3.1. Quadtree meshes. 3.2. Voronoi diagrams. 3.3. Delaunay trian-
gulation.

4. Efficientredistancing algorithms.4.1. Definition of the distancetree. 4.2. Buildingthe distance tree.
4.3. Interpolation. 4.4. Signing by triangulation. 4.5. Signing by normal vectors.

5. Numerical results. 5.1. Efficiency. 5.2. Application to level sets.

6. Conclusion.

!Research supported by NSF Young Investigator and SCREMS Awards and by Air Force Office of Scier
Research Grant FDF49620-93-1-0053.

664

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.

REDISTANCING FOR LEVEL SET COMPUTATIONS 665

1. INTRODUCTION

Many problems in computational science involve complex interfaces evolving throt
topological changes, faceting, and singularities. Such problems are difficult to solve nu
ically. Level set methods, which view the interface as the zero set of a function, form
effective general approach because they handle topological changes automatically.

An essential procedure in level set methode@istancing Given an interfac& built of
N elements, compute a signed distance function

D(x) = xmin||x — y| 1)
yel’

on some collection of points. A more general form of redistancing computes a simple
functiong(x) with zero sef”. Many evaluations ap are required, so efficiency is important.

We present efficient algorithms for solving this general redistancing problem. Our al
rithms resolvel” with a quadtree mesh and evalu@eon the quadtree vertices @(N)
space an@ (N log N) time. Interpolation produces each valpe) in O(log N) time and
runs extremely fast in practice.

Section 2 of this paper reviews level set methods for moving interfaces and spec
the redistancing problem. Section 3 describes standard properties of quadtrees, \C
diagrams, and Delaunay triangulations. Section 4 presents our fast redistancing algor
and Section 5 demonstrates their efficiency and utility with numerical experiments. Secti
draws conclusions and discusses extensions and applications.

2. MOVING INTERFACES, LEVEL SETS, AND REDISTANCING

This section reviews moving interface problems, level set methods, and redistan
Subsection 2.1 describes four moving interface problems, passive transport, unit nc
velocity, anisotropic curvature-dependent flow, and crystal growth. Subsection 2.2 con
moving interface problems into level set equations on a fixed domain and reviews t
solution by the level set method. Subsection 2.3 discusses initialization and redistanci
the level set method.

2.1. Moving Interface Problems

A general moving interface is the bounddrt) = 92 (t) of a setQ (t) ¢ RY depending
ontimet. If is sufficiently smooth, thefi (t) has an outward unit normal and a normal
velocity V at each point. Anoving interface problens a closed system of equations whict
specifiesV as a functional of”, possibly in a highly indirect and nonlocal way. Figure
displays representative solutions of several of the following moving interface problem:

Passive transport. An interface is transported in an ambient flow which is independe
of I'. Thus a velocity fieldF (x, t) is given onRY andI'(t) moves with normal velocity
V=N.F.

Unit normal velocity. The simplest geometric flow movEst) along its normal with ve-
locity V = 1. Nonconvex initial interfaces moving under this flow produce complex mergi
and cornering patterns which challenge standard numerical methods.

666 JOHN STRAIN

\/7

FIG.1. Representative solutions of moving interface problems: (a) initially circular bubbles after transpot
a shearing flow, (b) merging of complex interfaces with unit normal velocity, and (c) crystalline facets develoj
under a threefold anisotropic curvature-dependent velocity.

Curvature-dependent velocityAn interface moves with anisotropic curvature-depende
normal velocity

V(x,t) = R4+ ecogKo + 6p) + (R + ¢ cogK'0 + 67))C, 2

whereC is curvature and cas= N - e; is the cosine of the angle between the normal vect:
and the positive-axis. These velocity fields produce faceted interfaces merging in comp
anisotropic patterns and are often used as simplified models in materials science [16]

Crystal growth. Many industrial problems involve moving interfaces separating diffe
ent phases of a material. The interface between a solidifying crystalline material an
liquid melt, for example, can be modeled by a Stefan-type problem

U = Au off '(t) 3)
u=—eC onI'(t). 4)

REDISTANCING FOR LEVEL SET COMPUTATIONS 667

Here the temperature fieldis unknown and the interfade moves with normal velocity
V equal to the jump in the normal derivative of Many numerical methods have beer
developed for this problem [2, 8, 10].

2.2. Level Set Methods

Movinginterface problems can be reformulated as “level setequations” on a fixed dorr
using thezero set

I'@t) ={xeR%:pxt)=0 (5)

of an arbitrary functiory : RY x R — R, such as the signed Euclidean distance

— i _ — i)2
D2(x, t) = min | — yllz = #min i;(x. %) ()

or the signed max-norm distance

Deo(X, 1) = iyrgrl(rg)llx —Yllw =% min maxix — yil. (7)

Figure 2 shows a pentagonal interfacRfand the corresponding signed Euclidean distan
function Do.

If we choose the sign af positive in2(t), then the outward unit norm&l and normal
velocity V of I'(t) are given by standard geometric formulas [17]:

N =Vo/IVel2, 8
V =¢/IIVolla. ()]
a b

FIG. 2. The correspondence between an interface and a level set function: (a) A pentagonal ifteafate
(b) the signed Euclidean distance functibpto I.

668 JOHN STRAIN

Given any extension of the normal velocity vec¥oN to a functionF (x, t) onRY, Eq. (9)
implies the “level set equation” which mov&sby evolvinge:

ot —F Vo= —(F-N)[Vg|2=0. (10)

Equation (10) moves every level set@fwith the extended velocity, and in particular
moves the zero sét(t) with the correct velocity/ N. Merging, breaking, and other topo-
logical changes happen automatically because the topology is embedded impligitly
rather than explicitly in['(t), as illustrated by Fig. 3. The moving interface problems c
Subsection 2.1 can be reformulated into level set equations as follows.

Passive transport. For passive transporg is already defined oR® and is a natural
extension ofV N. The level set equation becomes a linear hyperbolic partial different
equation (PDE)

o — F(X,1)- Vo =0. (11)

FIG. 3. (a) Two pentagons growing with unit normal velocity merge. The discontinuous piecewise bilin
interpolant to the signed max-norm distance functinis plotted over a quadtree mesh at (b) initial and (c) final
times.

REDISTANCING FOR LEVEL SET COMPUTATIONS 669

Unit normal velocity. With N extended by Eg. (8), motion with unit normal velocity
becomes a nonlinear hyperbolic PDE

¢t — IVel2=0. (12)
Curvature-dependent velocityThe velocity defined by Eq. (2) yields
@t — (R+e€cogKO +60)[IVell2 = (R +€ cosK'O+65) V- (Vo/lIVel2) IVell2. (13)

Here co® = ¢« /|| Vell2 and we have used the curvature formQla= —V - N from [17].
Equation (13) is a mixed hyperbolic-parabolic PDE which is singular whgr@anishes.

Crystal growth. The exact velocity of the moving interface in crystal growth is a con
plicated nonlocal functional of the interface, which can be extended off the interface
many ways. See [2, 10] for representative extensions and numerical results.

Level set methods movE(t) via the level set equation. An initial level set functior
(X, 0) and an extended velocity field are built, the level set equation (10) is solvec
numerically, and the solutiop(x, t) is contoured whei'(t) is required. The method was
introduced in [6], and an extensive recent survey is [9]. It has undergone much develop
and been applied to many moving interface problems.

2.3. Redistancing

Moving interface computations begin with the initial interfacewhile the level set
equation (10) requires globally defined and continuous initial vapigs satisfying

I' ={x:¢Xx) =0} (14)

Theredistancing problenconsists of the stable specification and efficient evaluatign of

Efficiency is important because directly evaluating the signed distance furiaitrom
Eq. (6) is prohibitively expensive. Consider a uniform mesHRfhwith N9 points. A
typical interface” containsO(N9~1) elements, so evaluatirig, directly on the mesh costs
O(N%-1) work. This greatly exceeds ti@(N?) cost of movingl" one step on the mesh
if d > 2. Thus we need to changeor compute it efficiently—or both.

Efficiency is even more important for methods and problems where the level set func
is redistanced frequently, where we need an algorithm costing less than the computati
one time step. See [2, 9, 13] and Subsection 5.2 for examples.

Several fast schemes for evaluatibg approximately on a uniform mesh have beel
developed: The Eikonal equation (12) is solved to steady state in [15], while [1] app
heapsorttechniques. For many applications, however, a uniform mesh wastes computa
effort solving the level set equation accurately far from the interface. The ultimate goz
level set methods is to movg and redistancing discards valuesdar fromT, so efficient
level set methods should use an adaptive mesh to concentrate computational effort ne
interface. Adaptive level set methods are presented in [7, 9, 13].

The algorithms of this paper evaluate exact signed distance values in any norm &
vertices of a quadtree mesh which resolVesccurately at optimal cost. Given these verte
values, many interpolants to the signed distance function can be built. We discuss dis
tinuous piecewiséd-linear interpolation on quadtree cells and continuous piecewise-lin
interpolation on various triangulations of the quadtree vertices. All these interpolants

670 JOHN STRAIN

close to signed distance functions n€aaind give excellent results in the level set methoc
Our algorithms buildp in O(N log N) work if I containsN elements, cosD (log N) per
¢ evaluation, and run extremely fast in practice.

3. QUADTREES AND TRIANGULATION

Our fast redistancing algorithms rely on basic structures of computational geometry ¢
as quadtrees, Voronoi diagrams, and triangulations. In this section, we review the defini
and properties of these structures which suit them to redistancing. We define, build,
triangulate quadtree meshes in Subsection 3.1, discuss the Voronoi approach to rediste
in Subsection 3.2, and provide background on the Delaunay triangulation in Subsectior

3.1. Quadtree Meshes

3.1.1. Definition. A quadtree meslzovering the cube [A]¢ in RY is composed of
square cells organized into levels, with each cell on Iévell contained in some levél-
cell, and stores the following information:

The root cellCo =[0, 1]¢.

A maximum levelL > 0.

A cell list of cells, grouped by level.

A vertex listof cell vertices, without repetitions.
Other application-dependent data.

Each cellC in the cell list stores:

e lts levell and corner verteXiy, ..., iq): the cell covers the box2[iy, i; + 1] x
- X [id, ig + 1].

¢ The indices in the vertex list of thé! 2ell vertices.

e The index in the cell list of its parent (if there is one).

e The indices in the cell list of its children (if there are any).

e Other application-dependent data.

Figure 4 shows an example with= 2. Given a generdl-level quadtree, many operations
related to searching and sorting can be done efficiently: finding the quadtree cell whe
point x lies, for example, require® (L) examinations of bits in the binary representatiol
of x.

3.1.2. Building a quadtree.To build a quadtree, start with a root cell at levet 0.
Test whether it requires splitting intd® Zhildren on levell + 1. The splitting criterion
distinguishes between quadtrees and must be specified to suit the application. If a cell 1
splitting, some bookkeeping must be done: create new vertices, adjust familial poin
and so forth. Then test the children, split if necessary, and repeat the process recurs
Terminate the build when no cell requires splitting.

Many useful quadtrees can be built with some variant of the following splitting criteric

Split any cell whose edge length exceeds its minimum distanfe to (15)

If the distances from all the vertices Tbare computed as the quadtree is built, then thi
criterion is easy to implement. It results in quadtrees with smoothly varying cell sizes wt

REDISTANCING FOR LEVEL SET COMPUTATIONS 671

// — <

o Co s

- == ~ /
— /
VO V1
B B Cc4 "

B o . e

| A T
e P m‘-//
V4

FIG. 4. Levels 0, 1, and 2 of a quadtree with cellsand vertices/;.

are useful in adaptive level set methods [13] and harmonic analysis [12]. These quad
represent efficiently: if N childless cells toucl, then the entire quadtree meshesi[Jy
with only O(N) childless cells. Figure 5 plots a quadtree mesh built with Criterion (15)
the max-norm distandd .|, and a related criterion is used in Section 4.

FIG.5. A six-level quadtree mesh built around the pentagonal zero set of Fig. 2.

672 JOHN STRAIN

FIG. 6. Triangulating a quadtree mesh. The filled dots are quadtree vertices, open circles are Steiner po

3.1.3. Triangulating quadtree verticesGiven function valueg (x) at the verticesx
of the quadtree mesh, there are many ways to define a global interpolant. Multilir
interpolation on each quadtree cell is convenient and efficient, but produces a disconti
when cells change size.

A continuous interpolant can be built by triangulating the quadtree vertices into a sim
cial mesh and linearly interpolating on each simplex (triangliesf2, tetrahedron ifl = 3).
Any set of vertices can be triangulated with the Delaunay triangulation of Subsection 3.3
guadtrees built with Criterion (15) provide a more efficient alternative. Adjacent cells dif
in size by no more than a factor of 2, so such quadtrees can be triangulated by adding at
one Steiner point per cell and triangulating the result. Figure 6 shows a two-dimensi
example: the technique generalizes easily to higher dimensions [3].

Given a triangulation of the tree vertices, level set functions with any desired dec
of smoothness can be built by varying the interpolation technique appropriately. A
level set functiorp can be constructed by Hermite interpolation to the function values a
estimated derivatives of order k at triangulation vertices. These techniques are useful
geometric moving interface problems involvipgderivatives such as the normal vector
and curvature.

3.2. Voronoi Diagrams

The Voronoi diagram is a classic tool of computational geometry which solves the equ
lent of the redistancing problem wheis adiscreteset ofN pointsx; € RY. The Euclidean
Voronoi diagramV,(I") is a collection ofN regions

Vi ={xeRY:|Ix = xll2 < Ix — x|l for alli # j}. (16)

REDISTANCING FOR LEVEL SET COMPUTATIONS 673

FIG. 7. The Euclidean Voronoi diagram of a small set of points.

The max-norm Voronoi diagram,, (I") is defined by Eq. (16) witlj || replaced by || .
V; consists of all points closer tq than to any other point df. Figure 7 plots the Euclidean
Voronoi diagram of a small point set.

GivenV,(T"), the minimum distance from anyto I is simply ||x — X; |2 wherex € V;,
so redistancing immediately reduces to point location in the partifigi) of RY. Many
O(N log N) algorithms for building Voronoi diagrams and for point location have bee
designed [3, 4], so redistancing from a discrete point set is straightforward.

WhenT is a collection ofN computational elements; such as segments in the plane
or triangles inR3, the Voronoi regions can be defined by

V= {X e R min|x — yl2 < min|x — y| for alli % j},
yEEj yeE;

Thus the Voronoi diagram df reduces the redistancing problem to point location in
subdivision ofRY. SinceV (I') can be built efficiently [19], it provides—in theory—an
asymptoticallyoptimal solution to the redistancing problem. However, even Whisra
set of segments in the plane, there is no practical implementation of any fast algorithn
computing the Voronoi diagram. The Voronoi diagram is expensive to construct becau
must identify a single nearest element to every point of space.

A compromise between construction speed and redistancing speed is the compact \c
diagram of [5]. This geometric object produces several candidates for the nearest ele
to any pointx, but has a much simpler structure. The boundaries of a compact Vorc
region, for example, are simple polygons, rather than the piecewise algebraic curve

674 JOHN STRAIN

/ \

FIG. 8. The Delaunay triangulation of the tree vertices from Fig. 5.

the exact Voronoi diagram fdr. The compact Voronoi diagram may in future become th
redistancing method of choice, but no practical implementation is presently available.

3.3. Delaunay Triangulation

The Delaunay triangulation is a geometric object related to the Voronoi diagram, wt
we use to interpolate in Subsection 4.3 and to fix the sign@fn Subsection 4.4. Given
any setofM data point; in RY, there are many ways to connect the points into a simplici
mesh (a triangulation in the plane, a tetrahedralization in space), some better than of
One of the best is the Delaunay triangulation, which is the dual of the Voronoi diagr
described in Subsection 3.2. (Figure 8 shows a Delaunay triangulation of the tree ver
from Fig. 5.) It gives optimal error bounds for interpolation [18] and can be built efficient
in time O(M log M) by many algorithms. We use the standard C cddangle [11]. In
three dimensions, the worst-case complexity of triangulatingrtices increases ©(N?)
but Delaunay triangulation remains efficient.

4. EFFICIENT REDISTANCING ALGORITHMS

Efficient tree-based algorithms for redistancing the level set fungtame presented. We
define a new data structure, the distance tree, in Subsection 4.1, and build itin Subsectic
In Subsection 4.3, we interpolate on the distance tree to compute varisighedlistance
functions|g|. Subsection 4.4 uses a triangulation of the distance tree vertices to spe
a sign for the distance function at each point. Subsection 4.5 achieves the same gc
checking the normal vectors at nearest elements of

REDISTANCING FOR LEVEL SET COMPUTATIONS 675

4.1. Definition of the Distance Tree

The distance tree is a special quadtree designed to assist in fast redistancing of an int
I". In addition to the root cell, cell list, and vertex list defined in Subsection 3.1, it stol
vertex distances and cell pointers to nearby elemenis of

Supposé’ is composed o computational elements;, which are segmentsin the plane.
triangles inR3, or higher-order piecewise polynomial patches. We assume two proper
of this decomposition of: first, we can compute the exact minimum distance from ar
pointx to any elemenE; in any norm desired; and second, the element sizes all vanist
the same rate ad — oo. Then the distance tree contains:

e avertex distance lisbf the minimum max-norm distancé®, (x)| to I from each
vertexx of the tree.

Each distance tree cdll contains:

¢ anelement lisof all elementsE; intersecting theoncentric tripleof C. If
C={xeR':Xx—Clo=r}
has centec and edge lengthr2then its concentric tripl& is given by
T={xeR%: |x—cle =<3}

For convenience, we will refer to a cell with empty element list as empty. Figure 5 she
the cells in the distance tree for a simple curve.

4.2. Building the Distance Tree
We build a distance tree aroumuby

e choosing the root cell,
e specifying a splitting criterion,
e maintaining the element lists, and
e computing the vertex distances from each cell.
The root cell is the smallest square cell enclodingts level is 0, and its element list
contains every element f. The distances from its"&/ertices tol” are computed directly.
The splitting criterion is Criterion (15) from Subsection 3.1.2, specialized to the m:
norm distance:

Split any cell whose concentric triple intersetts a7

This criterion leads to an efficient search strategy for computing the vertex distances ¢
build the tree. It can be varied slightly by counting the number of elements intersecting
cell, to avoid over-resolving faceted interfadesvith large facets. This variant efficiently
resolves adaptively refined interfaces built with elements of varying sizes.

Splitting a cell according to this criterion requires element list and vertex distance
maintenance. Element lists are easy to handle: check every element in the parent’s el
list for intersection with the child’s triple and add it to child lists when intersection occu
Note that triples of child cells do not tile their parent’s concentric triple, so a nonem
parent may have empty children.

676 JOHN STRAIN

Vertex distance list. The mostimportantinformation in the distance tree —the minimul
max-norm distancéD.,(x)| from a new vertexx of a child cellC to '—is computed
efficiently by the following three-step search strategy:

1. Search the element list &, finding the minimum distancen; from x to the
elements of” in the element list o€.
2. If C is empty orm;y violates the inclusion condition

{yeRY X —ylow=m}CT, (18)

whereT is the triple ofC, compute the minimum distanoa, from x to elements of” in

the element list o€’s parentC’. The parent must be nonempty since it is being split.
3. If m, violates the inclusion condition

{yeR:Ix=ylow<m} CT, (19)

whereT’ is the triple ofC’, expand the search to include element§ af the element list
of the grandparer”. The resulimz is the minimum distance tb.

With this search strategy, the total cost of buildinglatevel distance tree around &
element interface iI©(NL) asN — oo, because the union of all triples of cells on leve
| < L intersectdO(N) elements.

The correctness of this procedure relies on using the max-norm distance fumxtign
because our square tree cells are spheres in the max-norm. Figure 9 illustrageathy
grandparents never need to be searched. The nearest elemavhich intersects the triple

I
/ \

/
- /

T"}

FIG. 9. The nearest element dfwhich intersects the tripl&’ of the parenC’ of a distance tree ce may
not be the nearest elementdfoverall. But if the max-norm is used, the nearest element intersettibgats
every element outside the triple’ of the grandparer®”.

REDISTANCING FOR LEVEL SET COMPUTATIONS 677

T’ of the parenC’ of a tree cellC may not be the nearest elementiobverall. But if the
max-norm is used, the nearest element intersedtitgpats every element outside the triple
T” of the grandparert”.

Inthe Euclidean norm, the distance between opposite corners of a hyperglthe-id so
we may need to search great-grandparents. However, a slight variant of this search st
computes all vertex values @f, in O(N L) time.

4.3. Interpolation

The distance tree gives us exact distance valugd(&t) vertices clustered near the
interface. A globally defined level set functigncan be built from these distance values ir
many ways, of which we discusslinear cell interpolation and linear simplex interpolation

4.3.1. Cellinterpolation. Let|g| be thed-linear interpolant to the vertex values on eac
empty childless distance tree cell. dn=2 dimensions, for example, a c&ll with edge
lengthh has four verticegxo + ih, yo + jh) with distancesy;; | for 0 <i, j < 1. Then|g]
is defined at a pointx = Xp + ah, y = yp + gh) in C by

lol(x, y) = (1= a) (1 = B)lgool + (1 — B)lgiol + (1 — a@)Blgorl + aBleul. (20)

On nonempty childless cells, whose concentric triples interBegp| is defined to be
exactly equaltothe distant® .| toI". (See Fig. 10.) The following search strategy evaluate
|| efficiently in nonempty childless cells near A nonempty childless cell stores a list
of all elements of" intersecting its tripleT . This allows us to search the element list o
C for the closest element tg yielding a minimum distance;. As in the construction of

mm ‘"ﬂ“
j " (lgi ‘,‘i".‘“ ALY _‘l,“
J‘ﬁ *qr% F“M" ‘,'i‘“‘i!\‘%“}!‘t'ﬁ‘f
4 -<pf ,‘ i &u} u.u\ "‘““‘?\“‘“i‘

I\‘ w.,“ i‘“ﬁh&

FIG. 10. The discontinuous piecewise bilinear interpolant to the signed max-norm distance fubgtion
a six-level quadtree mesh built around the pentagonal zero set of Fig. 2.

678 JOHN STRAIN

the distance treamn; may not be the global minimum distance, but searching the elem:
list of the parenC’ is guaranteed to find the minimum. There are a bounded numbiér o
elements near any nonempty childless €eisN — oo, so the cost of each evaluation is
dominated by thé (log N) cost of finding the celC containingx.

Thus|g| is evaluated by interpolating exact vertex distances on empty childless cells
by searching one or two short lists on nonempty childless cells near the interface. It ha
following properties.

e |¢| has zero sef,

e |¢| =|D4| at vertices of the tree and in cells sufficiently n€ar

e |p| can be evaluated i@ (log N) work at anyx, and

e |p|is continuous almost everywhere, with jumps where cells change size decrea
in magnitude as cells approath

4.3.2. Simplex interpolation.We can construct a continuous level set functiohy
triangulating the vertices and piecewise-linearly interpolating to the vertex values.
Fig. 11 for an example. This level set function can be evaluated at any>xpbinfinding
the simplex containing and interpolating from its vertices. Finding the simplex cost
O(log N), so eachg| evaluation cost® (log N). Building the Delaunay triangulation of the
O(N) tree vertices cos® (N log N), while triangulating the quadtree vertices directly as i
Subsection 3.1.3 cos®(N)—both asymptotically comparable to building the distance tre

The simplex interpolant is continuous, but not exactly equdb toearl”, and thus has
zero set slightly different frorv. If necessary, we can form the constrained Delaunay tria
gulation including the edges and vertices of the polygonal inteiifate get a continuous
interpolant with zero set exactly equallfo

f " 'é \‘P“‘W "1‘ AT i;‘
" a‘-%frﬁ}fh \i’ﬁm ‘W JA\\ \

\"

M il l\'iﬂinkvfi\}w

FIG. 11. The continuous piecewise linear interpolant to the signed max-norm distance fubgtiom the
Delaunay triangulation of Fig. 8.

REDISTANCING FOR LEVEL SET COMPUTATIONS 679

4.4. Signinge by Triangulation

Both cell and simplex interpolation produce an approximaisignedistance function
lo(x)| associated with an interfage while the level set method requires #igneddistance
functionp(xX) = %|e(x)|. When redistancing from its own zero set on a fixed grid, as
in Subsection 2.3, we can preserve the sign of each valyg>9of We need to fix the
sign, however, when initializing from an interfacd’. The following algorithm locates the
interface in a triangulation of the quadtree vertices, then propagates the sign inward
the boundary.

Given a triangulation of the distance tree vertices, mark every edge of the triangulz
which is crossed by an elementlof This requires time proportional to the tree depth time
the size of", O(N L) = O(N log N), because marking each edge cd3ts.). Set the sign
of ¢ to —1 at one corner vertex of the root cell and propagate the sign along every e
Before propagating along a marked edge, change the sign-frbto +1 or from+1 to
—1. If T crosses the edgetimes, change the sigmtimes. A robust algorithm must take
special care wheh touches an edge without crossing. After propagation finishes, we h:
a consistent choice of sign fgrat each distance tree vertex. See Fig. 12 for an example

4.5. Signinge by Normal Vectors

The sign ofg can be fixed more efficiently if we have an outward unit normal vect
on each element of'. Then while we are finding a closest point Bfto any quadtree

C\ FAR) Fan) /L\
L/ 1) L/
ra 4
\V L/ F
4 s 4 ?
CJ J L/ L/
Ia Id Z O fDY
3/ L L/ l/ L/
C /] Ia I el fan)
L/ » % N ./
(s s ™
L/ L/ L L L/
C} 4 4 O TR
Ny N Ny 7

FIG.12. Fixing the sign ofp with a triangulation of the distance tree vertices. The lower left corner is assign
sign —1; then the sign propagates unchanged along edges not crésshgwn as thin lines, and flips on edges
crossingl’, shown as thick lines. Thus the open circles receive negativalues while the solid dots receive
positiveg values.

680

JOHN STRAIN

FIG. 13. Pitfalls in fixing the sign ofp. The pointx lies outsidel” according to elemenE, but insidel’
according to elemerft, and both are nearest elementd’db x.

vertexx we can determine the sign gfx) simultaneously by checking which side of the
nearest element lies on. This procedure costs much less than the triangulated algorit
of Subsection 4.4, but requires some care in implementation. Figure 13 shows one pos
pitfall: At acute corners of’, all elements ofl" touching the corner must be checked tc
determine the sign gf(x) correctly.

5. NUMERICAL RESULTS

We verify the speed of our algorithms with large-scale runs on simple and comg
interfaces in Subsection 5.1 and show a simple application to level set computatior
Subsection 5.2. Two-dimensional versions of our algorithms were implemented in Al
C, compiled with the SunSoft C compiler using thastflag, and run on one CPU of a
Sun 200 MHz Ultra-2 workstation under Solaris 2.6. The codes have not been spec

optimized and could probably be speeded up by one to two orders of magnitude by inve:
additional programming effort.

5.1. Efficiency

5.1.1. Direct evaluation. We took the signed Euclidean distance functidp of the
pentagonal interface from Fig. 2, contoured it on a sqbére M grid to represent with
N = O(M) segments, then evaluat&l,,(x) directly at every vertex of thi/ x M grid.
Table I(a) records the CPU timds required and the computed ardaenclosed by the
interface, which indicates the resolutionidprovided by theM x M grid. We repeated the
experiment with the complex interface of Fig. 14 and report the corresponding times
areas in Table I(b).

REDISTANCING FOR LEVEL SET COMPUTATIONS

TABLE |

681

Uniform Grid Size M, Number N of Segments in the Interface, Computed Ared, and CPU

SecondsT for Direct Redistancing of the Level Set Functiong

@ (b)
M N A T M N A T
32 120 3.61486 0.09 32 302 1.50602 0.19
64 248 3.62906 0.73 64 856 1.71439 2.32
128 496 3.63180 5.84 128 1900 1.73998 20.5
256 1000 3.63253 49.7 256 3920 1.73377 169
512 2004 3.63266 400 512 7936 1.72980 1370

Note.Results for (a) the pentagonal interface of Fig. 2, and (b) the complex interface of Fig. 14.

FIG. 14. The complex interface used in Tables | and Il, plotted over a distance tree mesh with (a) 6, (

and (c) 8 levels.

682 JOHN STRAIN

These experimental results agree with theoretical expectations: the direct metho
quiresO(M?N) = O(M?) CPU time. DividingT by M2N gives an almost constant result,
close to 106 seconds per segment per evaluation. ThereTore10-®*M2N seconds, so
each direct evaluation cos@(N) time. For large-scale computation, these timings al
prohibitive. Three-digit accuracy in the area of a complex interface requires almost tf
minutes per redistancing: adequate accuracy in geometric quantities such as normal ve

and curvature would require greater computational effort and make fast algorithms ¢
more attractive.

5.1.2. Fast algorithms. We redistanced the interfaces shown in Figs. 2 and 14 wi
our fast algorithms to verify their efficiency. Here we built thdevel distance tree and
evaluated all vertex distances for the same interface, contoured by bilinear interpolatic
tree cells intoN segments. This gives resolution brequivalent to the direct method on
a uniformM x M mesh withM = 24, at far less cost. Table Il reports the CPU tinfes
for our fast algorithms, together with the numlé2of adaptive tree cells, the CPU tini
for Delaunay triangulation of th© (N) tree vertices byriangle[11], and the CPU tim&
required to move the interface one step with the adaptive tree methods of [13].

5.1.3. Comparisons.We draw the following conclusions from Tables | and II:

1. The total number of quadtree cells required to resolve an inteffageh the accu-

racy of a uniformM x M mesh is asymptoticalld (M)—an optimal result with bilinear
contouring.

TABLE Il
Number of Tree Mesh LevelsL and CellsC, Number N of Segments in the

Interface T', Computed Area A, and CPU SeconddT for Fast Redistancing of
the Level Set Functione

L M=2" N C A T D S
(@)
5 32 124 729 3.6111 0.03 0.14 0.16
6 64 252 1601 3.62792 0.09 0.24 0.28
7 128 502 3365 3.63145 0.20 0.44 0.50
8 256 1006 6913 3.63238 0.46 0.83 0.96
9 512 2010 14017 3.63264 1.07 1.76 2.01
10 1024 4020 28253 3.63269 2.36 3.56 4.15
11 2048 8040 56673 3.63271 5.25 7.23 8.44
12 4096 16080 113541 3.63271 11.6 14.8 17.4
(b)
5 32 322 989 1.41287 0.05 0.17 0.19
6 64 878 2897 1.68656 0.20 0.37 0.42
7 128 1918 7641 1.72989 0.56 0.89 1.03
8 256 3906 19701 1.73062 1.43 2.28 2.62
9 512 7918 46677 1.72947 3.44 5.79 6.66
10 1024 15912 101973 1.72873 8.03 13.2 15.2
11 2048 31849 213561 1.72849 18.5 28.3 33.2
12 4096 63705 437421 1.72844 415 60.7 69.8

Note.CPU second® for Delaunay triangulation of the tree vertices a@tbr moving the

interface one step. (a) The pentagonal interface of Fig. 2, and (b) the complex interface of
Fig. 14.

REDISTANCING FOR LEVEL SET COMPUTATIONS 683

2. The fast algorithms produce a globally defined level set fungtidor an N-
element interface i@ (N log N) CPU time, much faster than ti@&(M?) required for direct
evaluation on a uniform mesh and ti&N?) required for direct evaluation at the tree
vertices.

3. With 8000 segments resolving the area of a complex interface to four-digit accur
the equivalent of a 512 512 uniform mesh, our fast algorithms are 400 times faster th
direct evaluation on a uniform mesh and 20 times faster than direct evaluation at the
vertices. At our highest resolution, equivalent to a 483896 uniform mesh, the fast
algorithms are 160 times faster than direct evaluation at the tree vertices.

4. Our fast redistancing algorithms are highly practical; they cost less than Delau
triangulation of the tree vertices and less than moving the interface one step, permi
frequent redistancing at negligible cost.

5.2. Application to Level Sets

The following example from [1] demonstrates the usefulness of frequent redistancin
circle is passively transported with unit radial velocity in the velocity field (see Fig. 15)

F(x,y,t) = ((r = (1+1))cog50 + 6p) + (X, y)/r. (21)

FIG. 15. The velocity of Eq. (21), withX andY components shown in (a) and (b). The interfaces at equ
times are shown in (c).

684 JOHN STRAIN

a b

FIG. 16. A circular interface expanding with the velocity of Eq. (21), computed by solving the level s
equation with no redistancing: (a) and (b) contours of the level set functioa atand 2, (c) the quadtree mesh
from the method of [13] at= 2.

While the circle expands at unit speed, other level sets are wildly distorted by the five
anisotropic fieldF (see Fig. 16), producing large solution gradients which reduce t
accuracy of any numerical method. These computations used the tree methods of [13
the large gradients distort the mesh becaugeused as a mesh refinement indicator.
When the solutio® is redistanced every ten steps, the large gradients disappear andr
distortion is eliminated (see Fig. 17). Solution regularity is controlled by the regularity
the interface rather than the far-field valuedoivhen frequent redistancing is applied.

6. CONCLUSION

We have reviewed the role of redistancing in level set methods for moving interfa
and presented fast redistancing algorithms based on trees, triangulation, interpolatior
a robust search strategy. Our algorithms are fast, straightforward, and extremely u
in adaptive level set methods for moving interface problems. We are currently apply

REDISTANCING FOR LEVEL SET COMPUTATIONS 685

b

. N N

FIG. 17. A circular interface expanding with the velocity of Eq. (21), with redistancing applied every ti
steps: (a) and (b) contours of the level set functioh=atl and 2, (c) the quadtree mesh from the method of [13

att=2.

these algorithms to compute general velocity extensions, permitting the constructio
completely modular level set methods [14] for solving general moving interface pri
lems.

REFERENCES

1. D. A. Adalsteinsson and J. A. Sethidthe Fast Construction of Extension Velocities in Level Set Method
Technical Report PAM-738, Center for Pure and Applied Mathematics, University of California, Berkel
1997.

2. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan prob
J. Comput. Physl35 8 (1997).

686 JOHN STRAIN

3.

12.

13.
14.
15.

16.

17.

18.

19.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzk@pinputational Geometry: Algorithms and
Applications(Springer-Verlag, Berlin, 1997).

. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdi@siom. ACM

29, 669 (1986).

. M. McAllister, D. Kirkpatrick, and J. Snoeyink, A compact piecewise-linear Voronoi diagram for convi

sites in the planddiscrete Comput. Geori5, 73 (1996).

. S. J. Osher and J. A. Sethian, Front propagation with curvature-dependent speed: Algorithms bas

Hamilton-Jacobi formulationg, Comput. PhysZ9, 12 (1988).

. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kah@DE Based Fast Local Level Set Meth@AM

Report 98-25, Program in Computational and Applied Mathematics, University of California, Los Ange
1998.

. A. Schmidt, Computation of three dimensional dendrites with finite elem&n@omput. Physl125 293

(1996).

. J. Sethianl_evel Set Method&€Cambridge Univ. Press, Cambridge, UK, 1996).
10.
11.

J. A. Sethian and J. Strain, Crystal growth and dendritic solidificatidpmput. Phy8, 231 (1992).

J. R. ShewchuRiangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangul@aode,
School of Computer Science, Carnegie Mellon University, 1995.

E. SteinSingular Integrals and Differentiability Properties of Functiof&rinceton Univ. Press, Princeton,
NJ, 1970).

J. Strain, Tree methods for moving interface$;omput. Physin press.

J. Strain, Modular methods for moving interfacksComput. Physin press.

M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompre
two-phase flowJ. Comput. Physl14, 146 (1994).

J. Taylor, J. W. Cahn, and C. A. Handwerker, Geometric models of crystal gréeth,Met. Mat.40,
1443 (1992).

C. Truesdell and R. A. Toupin, The classical field theorieblgindbuch der Physik ll1/ledited by S. Rigge
(Springer-Verlag, Berlin, 1960).

F. W. Wilson, R. K. Goodrich, and W. Spratte, Lawson’s algorithm is nearly optimal for controlling ert
boundsSIAM J. Numer. AnaR7, 190 (1990).

C. K. Yap, AnO(nlogn) algorithm for the Voronoi diagram of a set of simple curve segméits;rete
Comput. Geon®, 365 (1987).

	CONTENTS
	1. INTRODUCTION
	2. MOVING INTERFACES, LEVEL SETS, AND REDISTANCING
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. QUADTREES AND TRIANGULATION
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	4. EFFICIENT REDISTANCING ALGORITHMS
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	5. NUMERICAL RESULTS
	TABLE I
	FIG. 14.
	TABLE II
	FIG. 15.
	FIG. 16.
	FIG. 17.

	6. CONCLUSION
	REFERENCES

